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Introduction

We proposeVISTA, the first multimodal summarization dataset con-

sisting of scientific presentation videos paired with paper abstracts.

Video Summary
Despite their impressive performance on diverse  
tasks, large language models (LMs) [...], 
implying  the difficulty of encoding a wealth of 
world  knowledge in their parameters. This 
paper aims to  understand LMs’ strengths and 
[...], by [...]. We  find that LMs struggle with 
less popular factual  knowledge, and [...]. 
Scaling, on the other hand,  mainly improves 
memorization of popular  knowledge, and fails 
[...]. Based on those findings,  we devise a new 
method for retrievalaugmentation[...] memories 
when necessary.
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Figure 1. VISTA pairs presentation videos with paper abstracts

Plan-based Framework

Problem: SOTA LMMs show problems with structural grounding

-> incoherence, hallucination

Solution: Introduce intermediate plan p as question sequence
{q1, q2, . . . , qm}
Training: Learn P (s|v, p) (video v, summary s) instead of P (s|v)
mapping

q1:What challenge do large language models face despite their impressive performance on diverse tasks?
q2:What is the aim of this paper regarding large language models?
q3:What is one key finding about LMs' performance with less popular factual knowledge?
q4:How does scaling impact LMs’ ability to memorize factual knowledge?
q5:What is the proposed method based on the findings of this paper?
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[Despite their impressive performance on diverse tasks, large language models (LMs) still struggle with 
tasks requiring rich world knowledge, implying the difficulty of encoding a wealth of world knowledge in 
their parameters.] [This paper aims to understand LMs’ strengths and limitations in memorizing factual     
knowledge, by conducting large-scale knowledge probing experiments on two open-domain entity-centric 
QA datasets: PopQA, our new dataset with 14k questions about long-tail entities, and EntityQuestions, a 
widely used open-domain QA dataset.] [We find that LMs struggle with less popular factual knowledge,     
and that retrieval augmentation helps significantly in these cases.] [Scaling, on the other hand, mainly     
improves memorization of popular knowledge, and fails to appreciably improve memorization of factual 
knowledge in the tail.] [Based on those findings, we devise a new method for retrieval-augmentation that     
improves performance and reduces inference costs by only retrieving non-parametric memories when 
necessary.]

Planning questions
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Figure 2. Plan extraction

The VISTA Dataset

Scale: 18,599 video-abstract pairs from leading AI conferences

Sources: ACL Anthology (ACL, EMNLP, NAACL, EACL), ICML,

NeurIPS (2020-2024)

Quality Control: Manual validation (500 samples) + automated

assessment (GPT-o1, All samples)

Data Splits: Train (80%), Validation (10%), Test (10%)
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Figure 3. Dataset attribute distributions

Videos: Avg. 6.76 minutes, 16.36 shots per video

Summaries: Avg. 192.62 tokens, 7.19 sentences per summary

Complexity: Dependency tree depth 6.02, TTR 0.62

Main Results

Plan-based superiority: Planning model outperforms all baselines

Modality ranking: Video + Audio > Video > Audio > Transcript

Modality interplay: Video excels alone (rich cues), audio adds

timing info, but transcripts are often noisy and hinder alignment

Planning benefit: Planning also boosts summarization for text-

and audio-only models
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Figure 4. Model performance comparison

Human and GPT-o1 Evaluation

Multi-aspect assessment: Faithfulness, Relevance,

Informativeness, Conciseness, Coherence

Human superiority: Humans consistently outperform all models

across all evaluation criteria

Plan-based advantage: Plan-mPLUG-Owl3 achieves best

performance among other models in both evaluations
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Figure 5. Human and GPT-o1 evaluation results

Conclusion

Dataset: VISTA provides 18,599 video-summary

pairs, a novel large-scale dataset for scientific

video-to-text summarization

Benchmarking: Comprehensive evaluation of

13+ SOTA LMMs across multiple settings

(zero-shot, QLoRA, full fine-tuning)

Method: Plan-based summarization improves

quality and factual accuracy over strong

multimodal baselines
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