RST-LoRA: A Discourse-Aware Low-Rank Adaptation for Long Document Abstractive Summarization

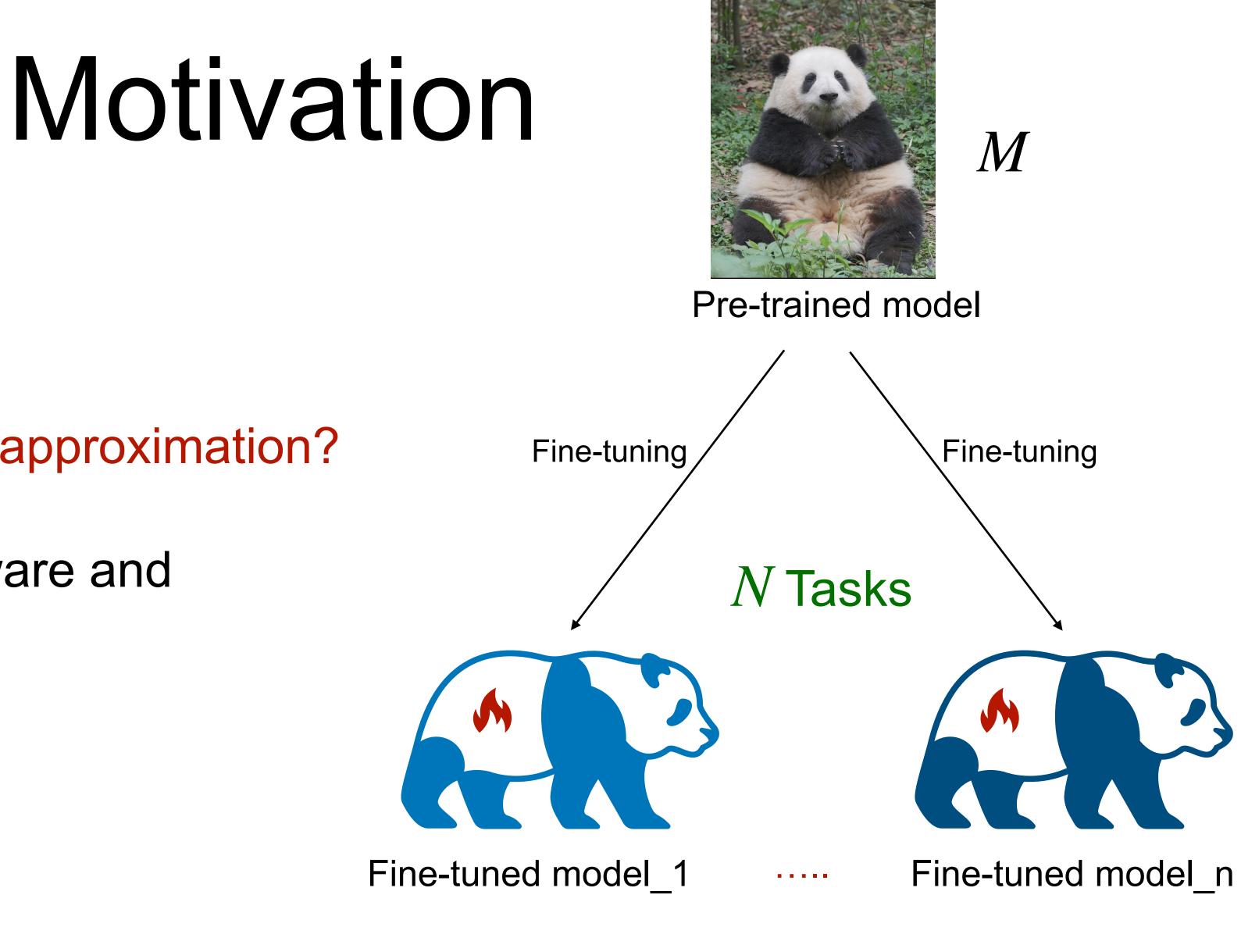
Department of Computer Science Department of Language Science and Technology Saarland Informatics Campus, Saarland University, Germany dongqi.me@gmail.com

UNIVERSITÄT DES SAARLANDES

European Research Council Established by the European Commissio

erc

Dongqi Pu, Vera Demberg

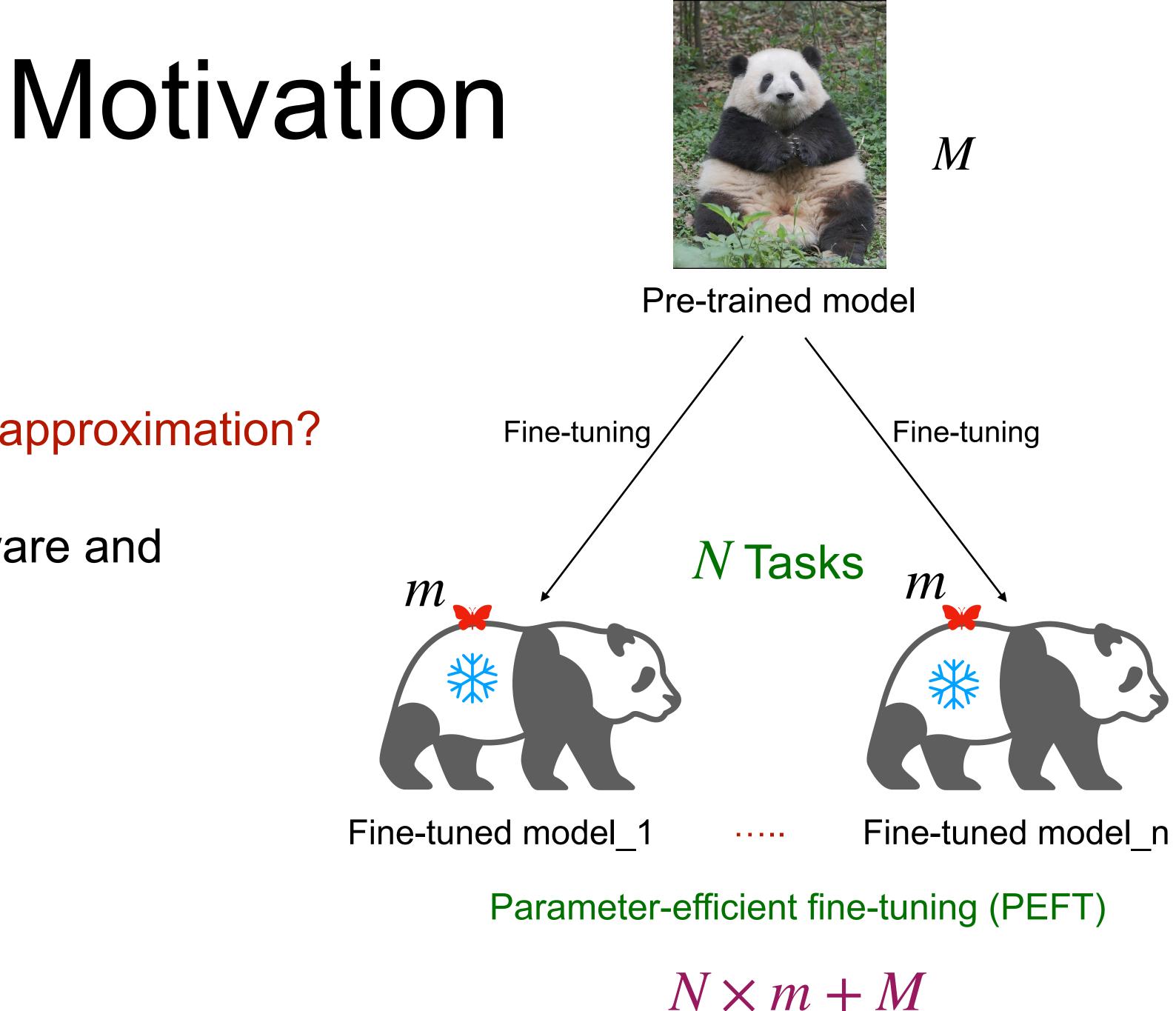

RST-LoRA improves long document summarization by integrating rhetorical structure theory into the LoRA model, outperforming previous methods.

TL;DR

Motivation

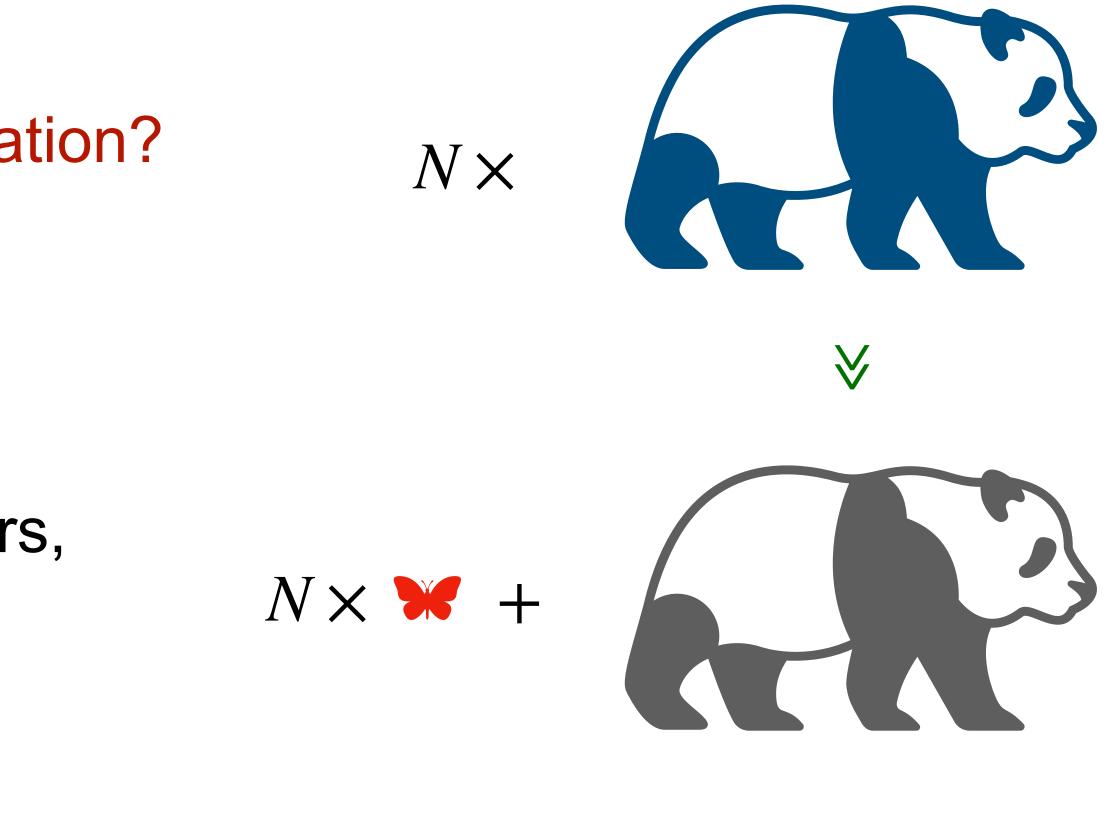
- Why we need **low-rank** approximation?
- Why we need **discourse** knowledge?

- Why we need low-rank approximation?
 - hardware ↑



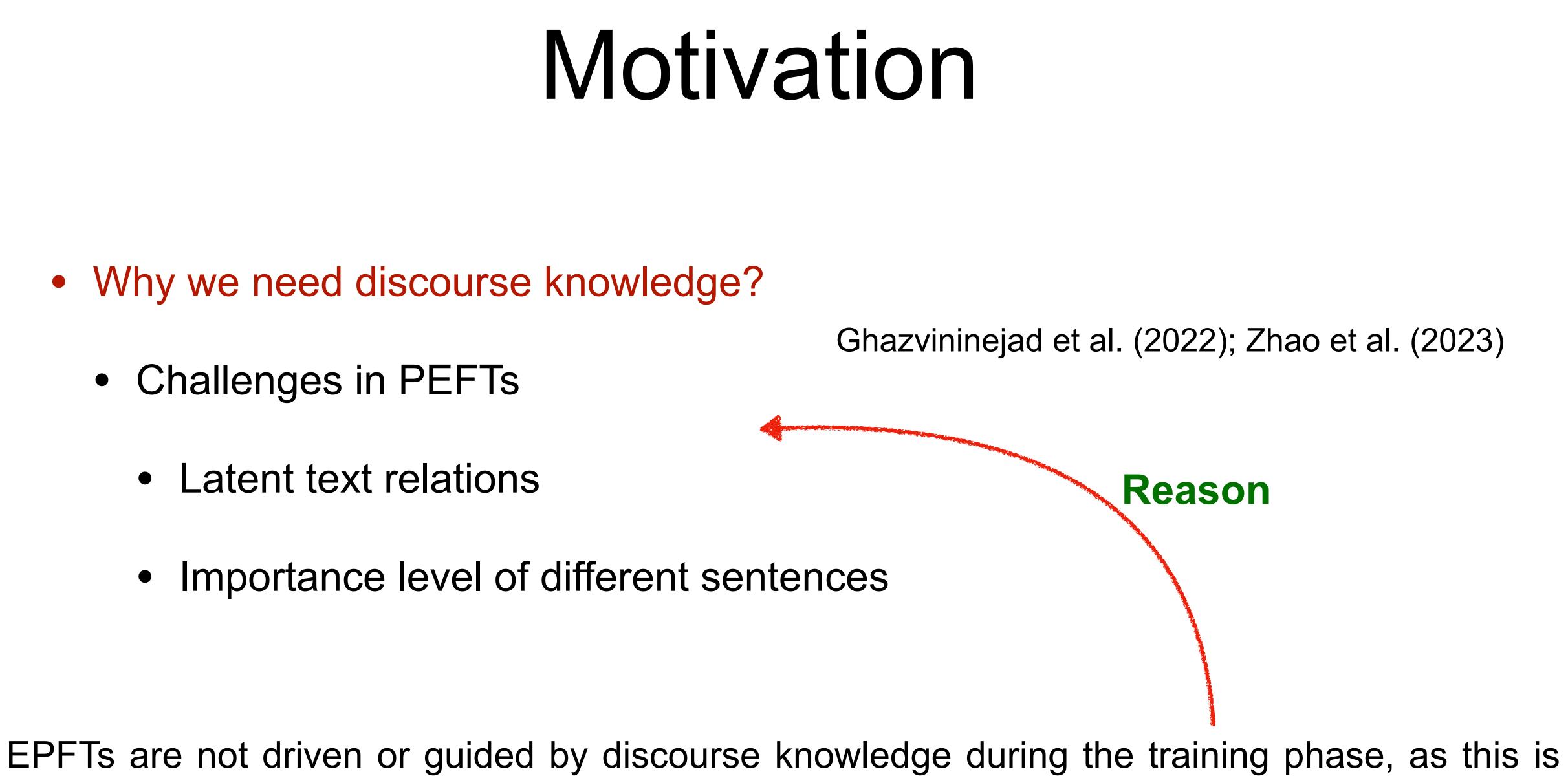
Vanilla full-parameter fine-tuning (FFT)

 $N \times M$


- Why we need low-rank approximation?
 - hardware ↑

Motivation

- Why we need low-rank approximation?


 - Only 0.01–1% of the parameters,
 PEFTs ≈ FFT

FFT vs PEFT

- Why we need discourse knowledge?
 - Challenges in PEFTs
 - Latent text relations
 - Importance level of different sentences

not explicitly present in the input data.

RST Prerequisite

- Rhetorical Structure Theory (RST) is helpful for determining:
 - - Sentences relations
 - Discourse importance level

• Which sentences should or should not be included in the summary

RST Prerequisite

- **EDU1** is the most pivotal component
- **EDU2** provides information for **EDU3**
 - It is not a problem to delete EDU2
 - It is still fine to delete both EDU2 and 3

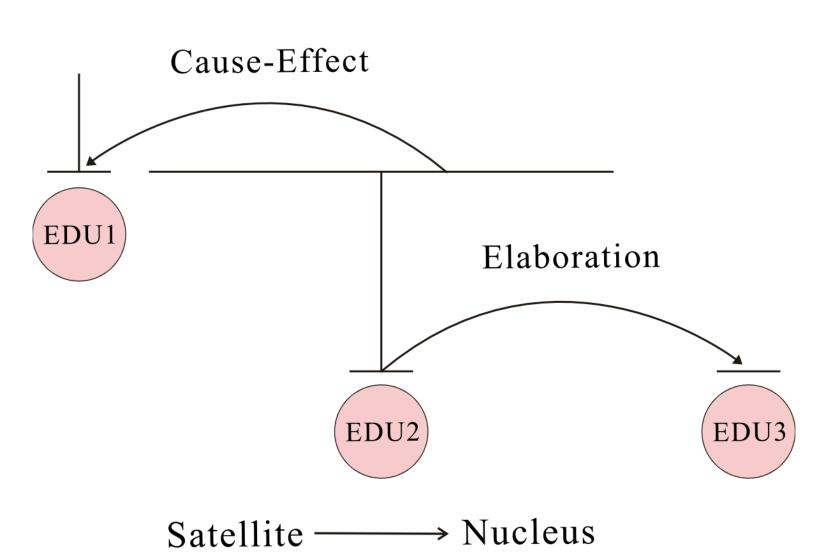
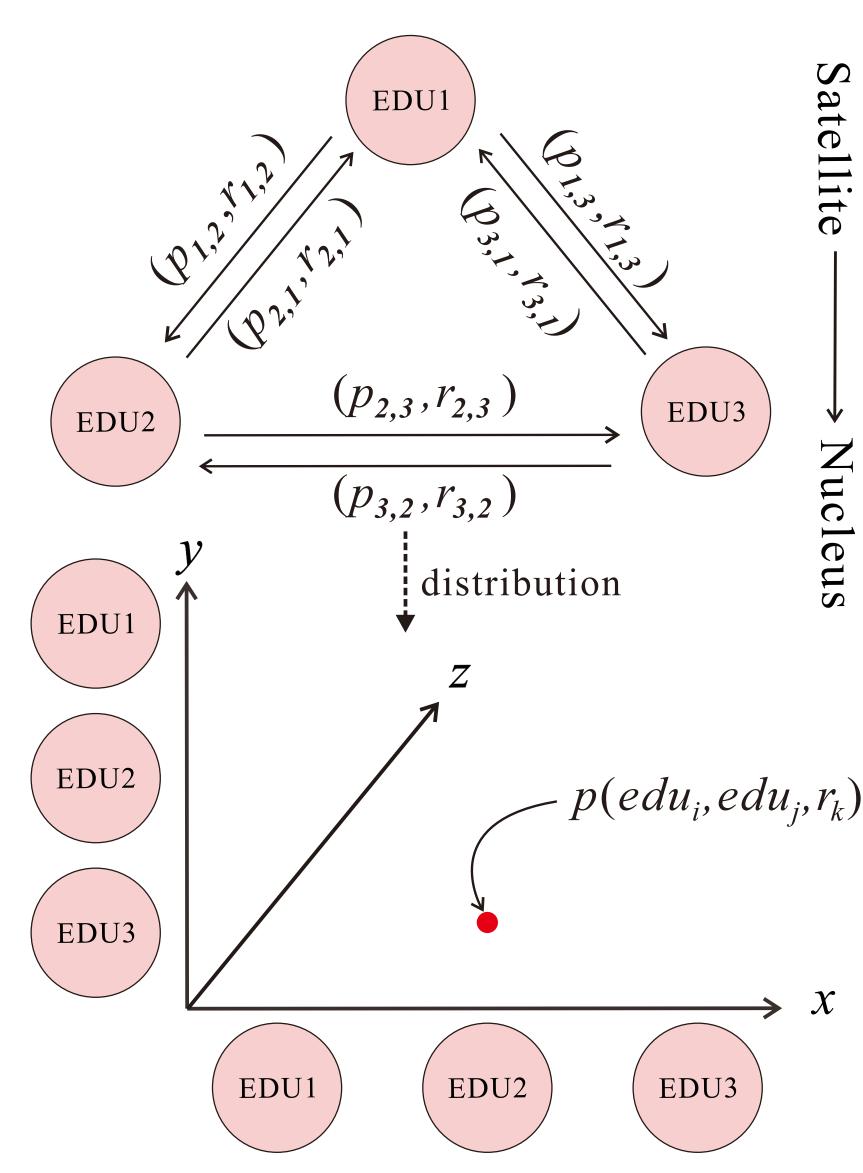
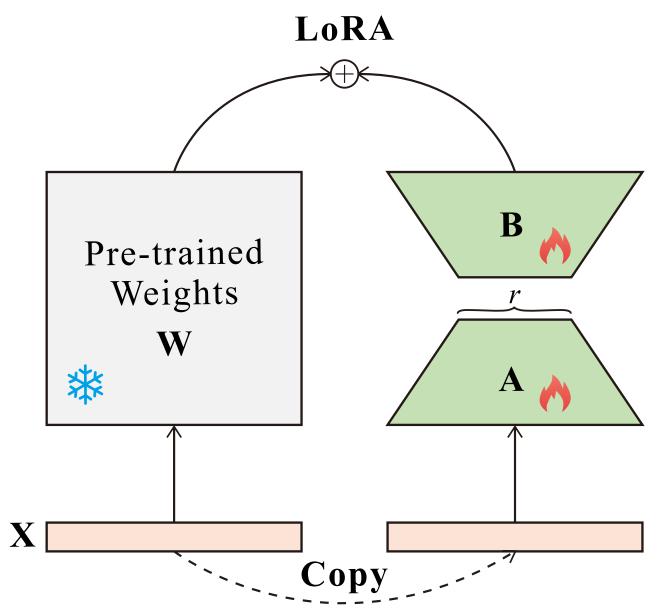
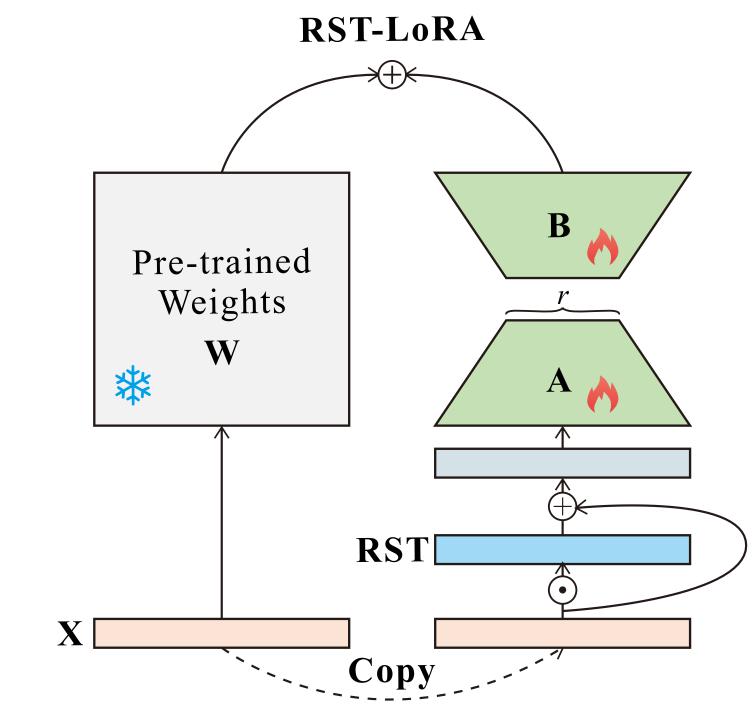



Figure 1: An example of RST tree: [Utilizing discourse structure to enhance text summarization is beneficial.]^{EDU1} [This technique can be used to identify key ideas and capture often overlooked nuances.]^{EDU2} [Accurate capture of these complex structures facilitates the generation of good summaries.]^{EDU3}

- RST Distribution
- RST-Aware Injection


- RST Distribution
 - Each point indicates the probability value $p(edu_i, edu_i, r_k) \in [0,1] \subseteq \mathbb{R}$ that edu_i is the nucleus of edu_i with discourse relation r_k . (Pu et al., 2023)
 - We average and merge the y-axis of the matrix, and the merged value $c(edu_i, edu_i, r_k)$ is called the importance index of edu_i with relation r_k .



- **RST Distribution (4 variants)**
 - RST_{wo}^b : Binary, label-agnostic representation (1 or 0)
 - RST_w^b : Binary distribution with relation labels
 - RST^p_{wo} : Label-omitted probabilistic representation
 - RST_w^p : Most fine-grained representation with relation types and probabilities

RST RST-Aware Injection • $h \leftarrow h + X(W_{A \times r}^{down}W_{r \times B}^{up})$ (vanilla LoRA) • $h \leftarrow h + [(X \odot (1 + \gamma))(W_{A \times r}^{down}W_{r \times B}^{up})$ (ours)

- Experimental Settings
 - Datasets
 - Parser
 - Metrics
 - Training and Inference

• Datasets

- Multi-LexSum (ML, Shen et al., 2022)
- eLife (Goldsack et al., 2022)
- BookSum Chapter (BC, Kryscinski et al., 2022)

books.

From legal documents, scientific papers, and

• Parser

- DMRST (Liu et al., 2020, 2021).

Extracting probabilities and type labels from final logits layer

• Metrics

- Rouge-Lsum (RLsum) (Lin, 2004)
- BERTScore (Zhang et al., 2020)
- METEOR (Banerjee and Lavie, 2005)
- sacreBLEU (Post, 2018)
- NIST (Lin and Hovy, 2003)

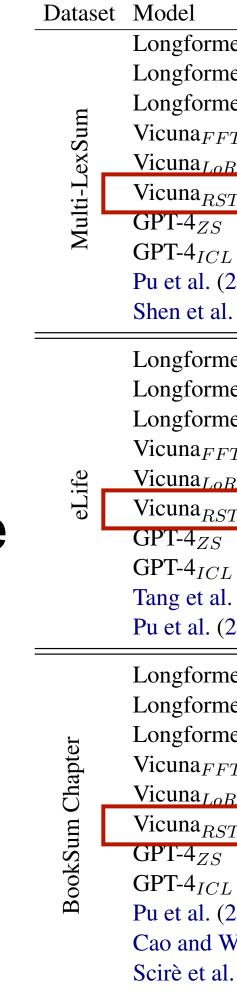
F1 scores of Rouge-1 (R1), Rouge-2 (R2), Rouge-L (RL), and

• Training and Inference

- Backbones

 - Vicuna13B-16k (Zheng et al., 2023) *GPT*
- Baselines
 - Backbones w/ FFT
 - Backbones w/ LoRA
 - GPT-4 (ZS & ICL)
- Other SOTAs

RST variant performance


Label integration

Uncertainty consideration

Both complementarily enhance model performance

Data	Model	$R1_{f1}\uparrow$	$R2_{f1}\uparrow$	RL_{f1} ↑	$\operatorname{RLsum}_{f1}\uparrow$
U	Longformer _{RSTwo} -LoRA	45.82	21.32	23.81	43.40
	$Longformer_{RST_w^b-LoRA}$	46.02	21.34	23.87	43.39
Sur	Longformer _{RST^w_{wo}-LoRA}	46.21	21.54	24.09	43.37
Multi-LexSum	$Longformer_{RST_w^p-LoRA}$	46.33	21.86	24.11	43.58
[ti-I	Vicuna _{RST^bwo} -LoRA	46.32	21.64	24.22	43.32
Mul	$Vicuna_{RST_w^b-LoRA}$	47.33	22.70	24.25	43.31
	Vicuna _{RSTwo} ^p -LoRA	47.39	22.79	24.35	43.33
	Vicuna _{RSTw} ^p -LoRA	47.45	23.19	24.39	44.02
	Longformer _{RSTwo} -LoRA	49.34	14.24	21.34	46.74
	$Longformer_{RST_w^b-LoRA}$	49.41	14.39	21.29	46.79
	$Longformer_{RST_{wo}^p-LoRA}$	49.87	14.49	21.83	47.15
eLife	$Longformer_{RST_w^p-LoRA}$	49.89	14.68	22.11	47.64
eL	Vicuna _{RST^bwo} -LoRA	48.73	14.68	21.89	47.11
	$Vicuna_{RST_w^b-LoRA}$	49.72	14.72	22.03	47.02
	Vicuna _{RST^pwo} -LoRA	49.87	14.79	22.21	48.10
	Vicuna _{RSTw} ^p -LoRA	49.92	14.92	22.41	48.21
BookSum Chapter	Longformer _{RSTwo} -LoRA	34.70	10.22	20.39	34.21
	$Longformer_{RST_w^b-LoRA}$	34.72	10.19	20.41	34.87
	$Longformer_{RST_{wo}^p-LoRA}$	35.29	11.38	21.62	35.11
	$Longformer_{RST_w^p-LoRA}$	35.40	11.76	21.88	35.27
	Vicuna _{RST^bwo} -LoRA	37.28	12.35	22.13	38.33
	$Vicuna_{RST_w^b-LoRA}$	37.41	12.66	22.51	38.40
	Vicuna _{RST^pwo} -LoRA	37.87	13.10	22.77	39.69
	$Vicuna_{RST_w^p-LoRA}$	37.92	13.24	22.93	40.31

 Table 1: Performance of different RST variants

- LoRA vs. FFT: Comparable, more efficient
- RST_w^p -LoRA: Best performance
- GPT-4: Poorest, lacks tuning

Main Results

	# Trainable Parameters	$\mathrm{R1}_{f1}\uparrow$	$ ext{R2}_{f1}\uparrow$	$\mathrm{RL}_{f1}\uparrow$	$\operatorname{RLsum}_{f1}\uparrow$	$\text{BERTscore}_{f1}\uparrow$	Meteor↑	sacreBLEU↑	NI
ner _{FFT}	0.44B	45.81	21.32	23.71	43.25	87.21	33.30	12.06	2.
ner _{LoRA}	1.13M	45.78	21.30	23.65	43.12	87.31	33.31	12.00	2.
$\operatorname{mer}_{RST_w^p-LoRA}$	1.13M	46.33 ^{†‡}	21.86 ^{†‡}	24.11 ^{†‡}	$43.58^{\dagger \ddagger}$	92.01 ^{†‡}	34.55 ^{†‡}	13.11 ^{†‡}	3.2
FT	13B	46.40	21.88	24.15	43.28	90.02	33.19	13.56	3.
DRA	6M	46.32	21.76	24.09	43.14	89.45	33.22	13.44	3.
$ST_w^p - LoRA$	6M	47.45 [‡]	23.19 ^{†‡}	24.39^{†‡}	44.02 ^{†‡}	93.89 ^{†‡}	35.31 ^{†‡}	14.02 ^{†‡}	4.1
, ,	-	38.74	13.39	18.26	37.67	60.91	24.24	7.43	1.
L	-	42.14	15.27	20.37	40.12	71.32	28.14	10.22	1.
(2023)	-	46.42	22.89	-	43.98	86.70	33.94	-	
1. (2022)	-	53.73	27.32	-	30.89	42.01	_	-	
ner _{FFT}	0.44B	47.59	13.58	20.75	45.25	85.50	28.21	6.86	2.
ner _{LoRA}	1.13M	48.31	13.69	21.10	45.80	85.63	28.18	7.05	3.
$\operatorname{mer}_{RST_w^p-LoRA}$	1.13M	49.89 ^{†‡}	14.68 ^{†‡}	22.11 ^{†‡}	$47.64^{\dagger \ddagger}$	$87.64^{\dagger\ddagger}$	31.23 ^{†‡}	$7.78^{\dagger \ddagger}$	3.7
FT	13B	48.32	14.06	21.31	45.57	85.71	30.28	7.00	2.
\overline{DRA}	6M	48.41	14.32	21.40	46.01	86.06	31.00	6.62	2.
$ST_w^p - LoRA$	6M	49.92 ^{†‡}	14.92 ^{†‡}	22.41 ^{†‡}	48.21 ^{†‡}	87.81 ^{†‡}	33.22 ^{†‡}	8.15 ^{†‡}	3.4
Y	-	42.73	9.05	17.93	40.15	61.21	25.13	3.47	2.
L	-	44.62	11.35	20.03	44.09	73.23	27.36	5.66	2.
1. (2023)	-	35.22	9.73	-	32.33	-	-	-	
(2023)	-	48.70	14.84	-	46.13	84.70	29.53	-	
ner _{FFT}	0.44B	34.68	10.02	20.35	33.71	81.02	27.30	3.32	1.
ner _{LoRA}	1.13M	34.63	9.96	20.22	33.79	81.33	27.32	3.55	1.
$\operatorname{mer}_{RST_w^p-LoRA}$	1.13M	35.40†‡	11.76 ^{†‡}	21.88 ^{†‡}	35.27 ^{†‡}	83.99 ^{†‡}	29.03†‡	5.94 ^{†‡}	2.0
FT	13B	37.21	12.38	22.07	38.21	82.31	28.01	3.45	1.
ρRA	6M	37.30	12.26	21.84	38.23	82.23	27.83	3.34	1.
$ST_w^p - LoRA$	6M	37.92 ^{†‡}	13.24 ^{†‡}	22.93 ^{†‡}	40.31 ^{†‡}	84.12 ^{†‡}	29.22 ^{†‡}	$5.48^{\dagger \ddagger}$	2.3
Y	-	35.25	7.46	17.52	34.23	58.56	26.50	3.36	1.
L	-	37.42	10.06	19.49	36.11	79.56	27.56	3.52	1.
(2023)	-	34.02	10.28	-	32.87	85.30	27.47	-	
Wang (2023)	-	41.11	10.63	-	40.20	-	-	-	
ıl. (2023)	-	42.13	10.53	16.75	-	-	-	-	

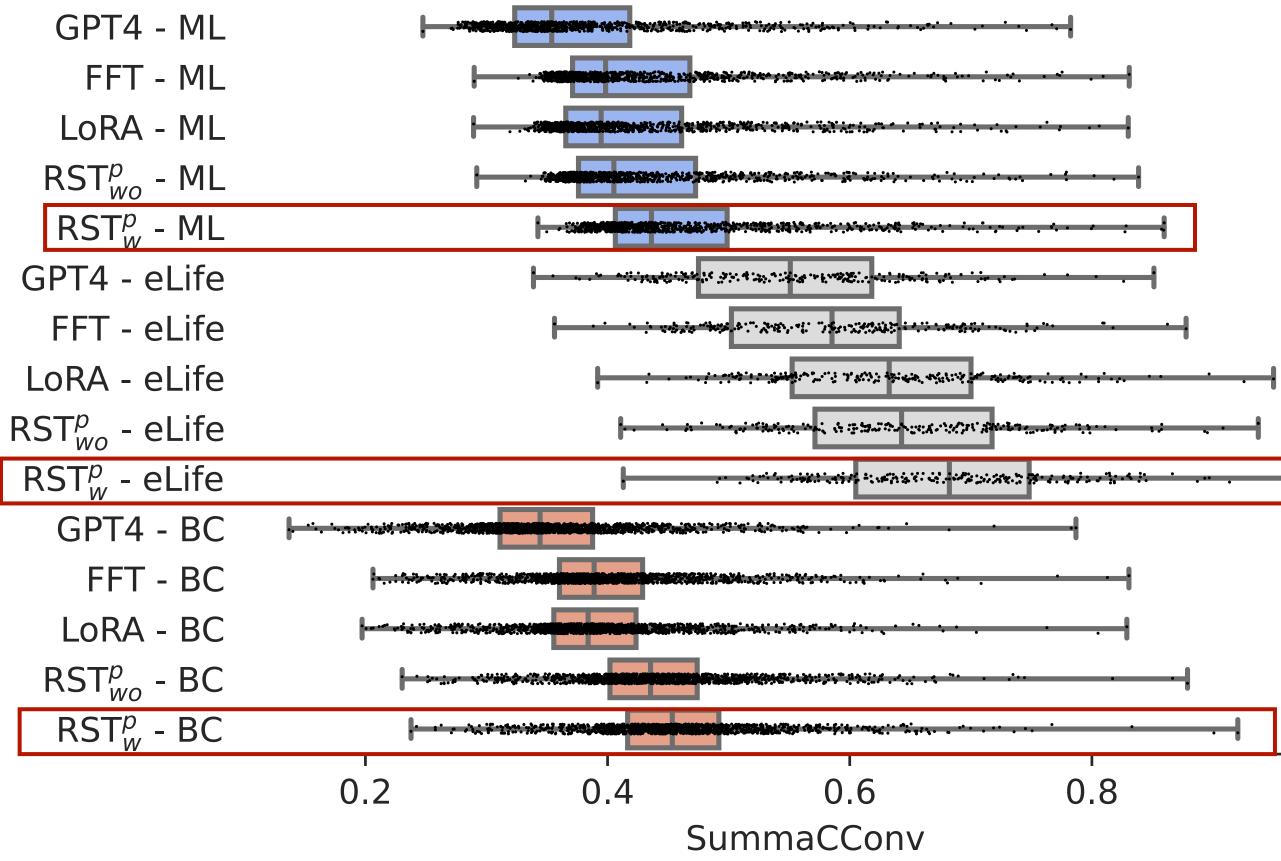
Ablation Study

Data

• **RST control conditions:** Even, Odd, Random

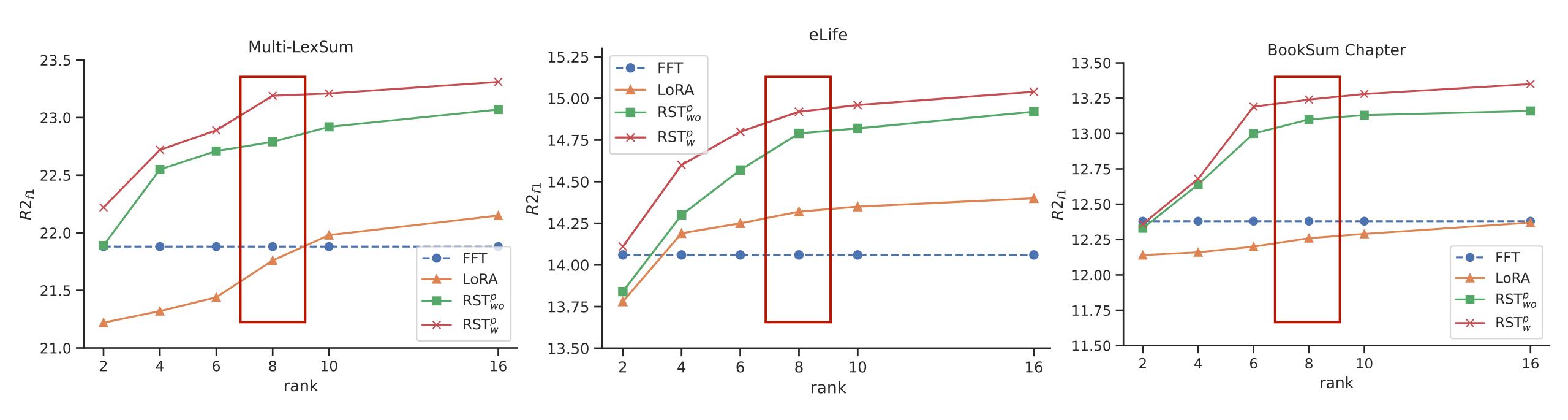
- Vicuna backbone testing
- Ablation shows reduced performance

Dataset	Model	$R1_{f1}$ ↑	$R2_{f1}$ ↑	RL_{f1} \uparrow	$RLsum_{f1}$
ML	RST_{Even}	46.21	21.39	23.66	42.55
	RST_{Odd}	46.26	21.37	23.82	42.90
	RST_{Random}	46.30	21.73	24.07	43.10
eLife	$\bar{R}ST_{Even}$	47.10	14.28	20.86	45.33
	RST_{Odd}	47.04	14.20	20.98	45.31
	RST _{Random}	47.32	14.29	21.36	45.71
BC	$\bar{\mathbf{R}} \bar{\mathbf{S}} \bar{\mathbf{T}}_{Even}$	37.09	$\overline{12.20}$	21.75	38.06
	RST_{Odd}	37.01	12.18	21.72	38.10
	RST_{Random}	37.27	12.23	21.80	38.19


Table 3: F1 scores for ablation study

Hallucination Checking

Candidate


- SummaC testing: 0-1 score range
- **GPT-4**: Weakest consistency
- **RST enhances LoRA: Reduces hallucinations**

Impact of Different Rank r

r = 8 is a trade-off point between performance gain and computational cost

Impact of Parser Capability

Parser impact test: 10%, 20%, 40%, 80% masking
 Vicuna backbone: Multi-LexSum dataset
 Performance declines: >40%

noise

Model	$\mathbf{R1}_{f1}$ †	$\mathbf{R2}_{f1}$ †	RL_{f1} †	$\operatorname{RLsum}_{f1}$
ST_10%	47.33	23.01	24.33	43.45
ST_20%	47.09	22.78	24.23	43.37
ST_40%	46.52	21.76	24.13	43.20
ST_80%	46.32	21.75	24.06	43.15
DRA	46.32	21.76	24.09	43.14

- Human evaluation: BookSum, 10 instances
- Evaluators: CL/CS Graduate candidates, blind test

• *RST^p_w*-LoRA: Highest neural model performance

Candidate Human GPT- 4_{ICL} Vicuna_{LoRA} $Vicuna_{FFT}$

Human Evaluation

R I C F Best | Worst 4.70 4.83 4.53 4.67 83.3% 0.0% 3.76 2.27 3.25 2.33 0.0% | 56.7% 4.03 2.37 3.20 2.50 0.0% 20.0% 4.27 2.57 3.67 2.77 6.67% | 13.3% Vicuna_{RST_{w}}^{p}-L_{oRA} 4.53 3.90 4.03 3.17 13.3% 10.0%

Relevance (R), Informativeness (I), Conciseness (C), Faithfulness (F)

GPT-4 Evaluation

GPT-4 self-evaluation: Lowest scores to own answers

• *RST*^{*p*}_{*w*}-LoRA: more closer to the quality of human-generated summaries

Candidate Human $GPT-4_{ICL}$ Vicuna_{LoR} Vicuna_{FFT} Vicuna_{RST}

Relevance (R), Informativeness (I), Conciseness (C), Faithfulness (F)

	R	Ι	C	F	Best	Worst
	4.70	4.83	4.53	4.67	83.3%	0.0%
	3.76	2.27	3.25	$\overline{2.33}$	0.0%	56.7%
A	4.03	2.37	3.20	2.50	0.0%	20.0%
-	4.27	2.57	3.67	2.77	6.67%	13.3%
$\nabla_w^p - LoRA$	4.53	3.90	4.03	3.17	13.3%	10.0%

Conclusion

- model.
- Discourse uncertainty and relation labels are complementarily.
- Our model outperforms current SOTA models in specific evaluation metrics.

A method for injecting discourse knowledge into the training of LoRA

More Info

- Data & Code: https://dongqi.me/projects/RST-LoRA
- Questions: dongqi.me@gmail.com

Thanks for listening Q&A