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TL;DR

RST-LoRA improves long document summarization by integrating
rhetorical structure theory into the LORA model, outperforming previous
methods.
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e Why do we need low-rank approximation?

e \WWhy do we need discourse knowledge?
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M
: : Fine-tuning Fine-tuning
e \WWhy do we need low-rank approximation?
* Model size 1 = software and hardware 1, N Tasks

Fine-tuned model 1 ---- Fine-tuned model n

Parameter-efficient fine-tuning (PEFT)
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N
e Why do we need low-rank approximation”? %
e Model size 1 = software and hardware 1
e Only 0.01-1% of the parameters, PEFTs = FFT
N X % +

FFT vs PEFT
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e Why do we need discourse knowledge?

e Challenges in PEFTs Ghazvininejad et al. (2022); Zhao et al. (2023)

e Latent relations Reason

 |mportance level

PEFTs are not driven or guided by discourse knowledge during the traiing phase, as this is
not explicitly present in the input data.
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 Rhetorical Structure Theory (RST) is helpful for determining:
* Which sentences should or should not be included in the summary
e Sentences relations

e Discourse importance level
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e EDU1 is the most pivotal component

e EDU2 provides information for EDU3

It is not a problem to delete EDU2

It is still fine to delete both EDUZ2 and 3

RST Prerequisite

Cause-Effect

RN

Elaboration

Satellite - Nucleus

Figure 1: An example of RST tree: [Utilizing dis-
course structure to enhance text summarization is ben-
eficial. |¥*PV! [This technique can be used to identify
key ideas and capture often overlooked nuances.]*P"?
[Accurate capture of these complex structures facilitates
the generation of good summaries.]*°Y3
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e RST Coherence Distribution

* Each point indicates the probability value | 0, .7 )¢
pledu;, edu;,,r,) € [0,1] C R that edu; is < —
/ : : : (P3,2:73,2)
the nucleus of with discourse relation y L
r,. (Liu et al., ACL 2023) '
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e \We average and merge the y-axis of the
matrix, and the merged value

c(edu;, edu;, 1) is called the importance
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index of edu; with relation ;.
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e RST Coherence Distribution (4 granularities)

. RSTVI",O: Binary, label-agnostic representation (1 or 0)
. RST@: Binary distribution with relation labels
e RST? : Label-omitted probabilistic representation

. RSsz: Most fine-grained representation with relation types and
probabillities (our final model)
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Our Method
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e Datasets
e Multi-LexSum (ML, Shen et al., 2022)
e clLife (Goldsack et al., 2022)

e BookSum Chapter (BC, Kryscinski et al., 2022)
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e Parser
e DMRST (Liu et al., 2020, 2021).

e Extracting probabilities and type labels from final logits layer

14



L NAACL 2024 Experiments

e Training and Inference

e Backbones

e ongformer (Beltagy et al., 2020) = Seq2Seq
e \VVicuna13B-16k (Zheng et al., 2023) = GPT

e Baselines
e Backbones w/ FFT
e Backbones w/ LORA
e GPT-4 (in-context learning)

e Other SOTAS
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RST variant performance

. Label integration

13.6

e Uncertainty consideration ¢

Both complementarily
enhance model performance

RST'-LoRA: Best performance
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R24 Scores for Vicuna Models in BookSum




R2q Score

1 NAACL 2024
Our best model vs GPT-4 and SOTAs

Multi-LexSum eLife BookSum Chapter

14




= NAACL 2024

Hallucination Checking

GPT4 - ML
. FFT - ML
SummacC testing: 0-1 score AR - ML
range | RST, - ML |
GPT4 - elLife
FFT - eLife

e GPT-4: Weakest consistency

LoRA - eLife
IRST? - eLife]

Candidate

e RST enhances LoRA: GPT4 - BC
FFT - BC

Reduces hallucinations ' ORA - BC

RST?, - BC |

0.2 0.4 0.6
SummaCConv
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Impact of Parser Capabillity

Impact of Random Masking on the Parser

e Parser impact test: 10%, 20%, *° -
40%, 80%, 100% masking
23.5 -
e Vicuna backbone: Multi- o
O - O
e Performance declines: >40%  2s-
noise |
Metric
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—eo— RLp I | |
IQO\O Q\ Q\ IQO\ IQ\ S;Y
QS:}} QS"}’} Qg'}?‘ QS’,}(P Qé\/g %




R2pn

= NAACL 2024

23.5 7

23.0

Impact of Different Rank r

Multi-LexSum

22.5 -
22.0 -
o-————0-————-0-—-4-- O-——F O ——————————————— O
-@- FFT
21.5 1 LoRA
—— RSThH,
210 | | | | | |
2 4 6 8 10 16
rank

r = 8 is a trade-off point between

eLife

1525 _ o et

15.00 LORA } "
—— RST{?V 7

14.75

14.25 -
*o-——-S0-——-——-——0-1-- -} - ———— O

14.00 -

13.75

13.50 I T | |
2 4 6 8 10 16

rank

20

13.50 -
13.25 -
13.00 -
12.75 -
b,
N 12.50
C
12.25 -
12.00 -

11.75

BookSum Chapter

-®- FFT
LoRA
—— RSTh,

11.50

I
16

performance gain and computational cost
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Relevance

e Human evaluation: BookSum,
10 Instances

e Evaluators: CL/CS Graduate
candidates, blind test

Faithfulness . 1 Ahformativeness
5

o RST'-LoRA: Highest neural
model performance

Human
— GPT-4,¢

Vicuna,ora Conciseness
— VicunaFFT

—— VICUNaRsT? - LoRrA
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Relevance

e GPT-4 self-evaluation: Lowest
scores to own answers

® RST‘/P;_LoRA: more Closer tO the Faithfulress / inforn;ativeness
quality of human-generated
summaries
Human
— GPT-4,¢
Vicuna,ora Conciseness
—— Vicunagrr

—— Vicunagsts — oRA
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Conclusion

* A method for injecting discourse knowledge into the training of LORA
model.

e Discourse uncertainty and relation labels are complementarily.

e Our model outperforms current SOTA models in specific evaluation
metrics.
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e Code: https://dongai.me/projects/RST-LoRA

More Info

e Questions: dongqi.me@amail.com
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https://dongqi.me/projects/RST-LoRA
mailto:dongqi.me@gmail.com

Thanks for listening
Q&A
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