

RST-LoRA: A Discourse-Aware Low-Rank Adaptation for Long Document Abstractive Summarization

Department of Computer Science Department of Language Science and Technology Saarland Informatics Campus, Saarland University, Germany dongqi.me@gmail.com

European Research Council Established by the European Commissio

UNIVERSITÄT DES SAARLANDES

Dongqi Liu, Vera Demberg

RST-LoRA improves long document summarization by integrating **rhetorical structure theory** into the LoRA model, outperforming previous methods.

TL;DR

- Why do we need **low-rank** approximation?
- Why do we need **discourse** knowledge?

Motivation

- Why do we need low-rank approximation?

Vanilla full-parameter fine-tuning (FFT)

 $N \times M$

- Why do we need low-rank approximation?

- Why do we need low-rank approximation?

 - Only 0.01–1% of the parameters, PEFTs \approx FFT

Motivation

 \checkmark

FFT vs PEFT

- Why do we need discourse knowledge?
 - Challenges in PEFTs
 - Latent relations
 - Importance level

PEFTs are not driven or guided by discourse knowledge during the training phase, as this is not explicitly present in the input data.

Ghazvininejad et al. (2022); Zhao et al. (2023) Reason

- Rhetorical Structure Theory (RST) is helpful for determining:
 - Which sentences should or should not be included in the summary
 - Sentences relations
 - Discourse importance level

RST Prerequisite

- **EDU1** is the most pivotal component
- **EDU2** provides information for **EDU3**
 - It is not a problem to delete EDU2
 - It is still fine to delete both EDU2 and 3

RST Prerequisite

Figure 1: An example of RST tree: [Utilizing discourse structure to enhance text summarization is beneficial.]^{EDU1} [This technique can be used to identify key ideas and capture often overlooked nuances.]^{EDU2} [Accurate capture of these complex structures facilitates the generation of good summaries.]^{EDU3}

- RST Coherence Distribution
 - Each point indicates the probability value $p(edu_i, edu_i, r_k) \in [0,1] \subseteq \mathbb{R}$ that edu_i is the nucleus of edu_i with discourse relation r_k . (Liu et al., ACL 2023)
 - We average and merge the y-axis of the matrix, and the merged value $c(edu_i, edu_i, r_k)$ is called the importance index of edu_i with relation r_k .

Our Method

- RST Coherence Distribution (4 granularities)
 - RST_{wo}^b : Binary, label-agnostic representation (1 or 0)
 - RST_w^b : Binary distribution with relation labels
 - RST^p_{wo} : Label-omitted probabilistic representation
 - RST_w^p : Most fine-grained representation with relation types and probabilities (our final model)

Our Method

- RST-Aware Injection
 - $h \leftarrow h + X(W_{A \times r}^{down}W_{r \times B}^{up})$
 - $h \leftarrow h + [(X \odot (1 + \gamma))(W_{A \times r}^{down} W_{r \times B}^{up}) \text{ (ours)}$

vanilla LoRA)

12

• Datasets

- Multi-LexSum (ML, Shen et al., 2022)
- eLife (Goldsack et al., 2022)
- BookSum Chapter (BC, Kryscinski et al., 2022)

Experiments

• Parser

- DMRST (Liu et al., 2020, 2021).

Experiments

Extracting probabilities and type labels from final logits layer

• Training and Inference

- Backbones

 - Vicuna13B-16k (Zheng et al., 2023) *GPT*
- Baselines
 - Backbones w/ FFT
 - Backbones w/ LoRA
 - GPT-4 (in-context learning)
- Other SOTAs

Experiments

RST variant performance

R2_{*f*1} Scores for Vicuna Models in BookSum

Our best model vs GPT-4 and SOTAs

Hallucination Checking

SummaC testing: 0-1 score range

- GPT-4: Weakest consistency
- **RST enhances LoRA:** Reduces hallucinations

GPT4 - ML FFT - ML LoRA - ML RST $^{p}_{W}$ - ML GPT4 - eLife FFT - eLife LoRA - eLife RST $^{p}_{W}$ - eLife GPT4 - BC FFT - BC LoRA - BC

Candidate

Impact of Parser Capability

- Parser impact test: 10%, 20%, ^{24.0}
 40%, 80%, 100% masking
- Vicuna backbone: Multi-LexSum dataset
- Performance declines: >40% noise

22.0 -

23.5

23.0

22.5

Score

Impact of Random Masking on the Parser

r = 8 is a trade-off point between performance gain and computational cost

Impact of Different Rank r

- Human evaluation: BookSum, 10 instances
- Evaluators: CL/CS Graduate candidates, blind test
- RST_w^p -LoRA: Highest neural model performance

- GPT-4 self-evaluation: Lowest scores to own answers
- RST_w^p -LoRA: more closer to the quality of human-generated summaries

Conclusion

- model.
- Discourse uncertainty and relation labels are **complementarily**.
- Our model outperforms current SOTA models in specific evaluation metrics.

A method for injecting discourse knowledge into the training of LoRA

More Info

- Code: <u>https://dongqi.me/projects/RST-LoRA</u>
- Questions: <u>dongqi.me@gmail.com</u>

Thanks for listening Q&A

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Programme (Grant Agreement No. 948878)

Established by the European Commission