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Introduction

Lay Summarization Challenge:

= Scientific texts need explanatory content for accessibility

= Current methods underrepresent explanations in generated
summaries

Key Insights:

= Explanations help lay readers understand complex concepts
through analogies, background, comparisons

= Most models follow end-to-end approaches without explicit
explanation modeling

= Plan-based models offer better controllability and reduce
hallucinations

Method

Method

Step 3: Two Model Variants

* Plan-Output (End-to-End): Train P(b, s|x) to generate plan (b) +
summary (s) jointly based on input document (z)

* Plan-Input (Pipeline): PG Module P(b|x) generates plan, SG
Module P(s|z,b) generates summary

Main Results

Step 1: Explanatory Content Extraction

= Apply DMRST parser to identity explanatory EDUs from RST
relations

* Focus on 4 key relations: Background, Elaboration, Explanation,
Comparison

= Extract (explanation, target) EDU pairs from reference summaries
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Figure 1. RST tree structure

Step 2: Plan Generation

» Use GPT-40 to generate questions from target sentences +
context

= Questions trigger explanatory content (based on QUD
framework)

» Create ordered sequence of plan questions b = (q1, ¢o, .-, G

- Planning questions J- - - -« - o m o ,

- ql: How does the cerebellum use feedback to adjust the timing of movements in a sequence?
. q2: How does the cerebellum use feedback from one blink to trigger the next in a sequence?
'\, q3: How can a blink in one eye trigger a blink in the other eye?

____________________________________________________________________________________________________________

~{ Processed SUmMmary - - - - o m oo ‘.

' [The cerebellum utilizes proprioceptive feedback to fine-tune the timing of movements in a sequence

' based on previous actions.]t [Imagine the cerebellum as a coach who watches how you perform a move,
' then gives tips to improve the next one based on what was seen.]® But how exactly does it achieve this?
[To investigate, we trained rabbits to blink in response to an external cue and explored whether the

" cerebellum could use feedback from one blink to trigger the next.]l2[As expected, after learning the initial

blink, the rabbits blinked again in response to their own first blink, creating a chain of movements.]®:
. Control experiments confirmed that each blink was initiated by the previous one rather than the original
. cue. Consistent patterns of brain activity during this process indicate that the cerebellum adjusts

. movement based on feedback from previous actions. [Building on this, we trained rabbits to blink on cue,

- and they learned to initiate additional blinks in response to earlier blinks in the sequence.]t3 [ We further

- found that the rabbits could use a blink from one eye as a cue to trigger a blink in the other eye, suggesting

' that the same mechanism governs these movements.]% This raises the possibility that the cerebellum

might also guide sequences of cortical activity during cognitive tasks, given its extensive connections to .

' the cortex, a question future experiments should explore.
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Figure 2. Plan generation pipeline
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= Plan-Input achieves SOTA performance across all metrics

* More explanations: ExpRatio 17.68% vs. 13.61% (Mistralpy)
= Better factual consistency: VeriScore 0.71 vs. 0.56 Mistralpr)
» Higher readability: D-SARI 37.18 vs. 30.11 Mistralpr)
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Figsure 3. Model performance comparison across three datasets

Human Evaluation: Humans remain superior, but Plan-Input out-
performs all baselines, achieving near human-level accessibility and
substantial improvements in explanation quality.

Controllability of Explanatory Content

= Our models can control explanation types by modifying plans

* Deleting specific RST relation questions reduces the
corresponding explanations in the output

Control Effectiveness on SciNews Dataset
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Figure 4. Control effectiveness across different explanation types

Conclusion
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" [ntroduced explanatory summarization task
for controlled lay summary generation
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* Developed discourse-driven planning using
RST + QUD frameworks
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